104 research outputs found

    Inparanoid: a comprehensive database of eukaryotic orthologs

    Get PDF
    The Inparanoid eukaryotic ortholog database (http://inparanoid.cgb.ki.se/) is a collection of pairwise ortholog groups between 17 whole genomes; Anopheles gambiae, Caenorhabditis briggsae, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Takifugu rubripes, Gallus gallus, Homo sapiens, Mus musculus, Pan troglodytes, Rattus norvegicus, Oryza sativa, Plasmodium falciparum, Arabidopsis thaliana, Escherichia coli, Saccharomyces cerevisiae and Schizosaccharomyces pombe. Complete proteomes for these genomes were derived from Ensembl and UniProt and compared pairwise using Blast, followed by a clustering step using the Inparanoid program. An Inparanoid cluster is seeded by a reciprocally best-matching ortholog pair, around which inparalogs (should they exist) are gathered independently, while outparalogs are excluded. The ortholog clusters can be searched on the website using Ensembl gene/protein or UniProt identifiers, annotation text or by Blast alignment against our protein datasets. The entire dataset can be downloaded, as can the Inparanoid program itself

    Functional Characterization in Caenorhabditis Elegans of Transmembrane Worm-Human Orthologs

    Get PDF
    Background: The complete genome sequences for human and the nematode Caenorhabditiselegans offer an opportunity to learn more about human gene function through functionalcharacterization of orthologs in the worm. Based on a previous genome-wide analysis of wormhumanorthologous transmembrane proteins, we selected seventeen genes to exploreexperimentally in C. elegans. These genes were selected on the basis that they all have highconfidence candidate human orthologs and that their function is unknown. We first analyzed theirphylogeny, membrane topology and domain organization. Then gene functions were studiedexperimentally in the worm by using RNA interference and transcriptional gfp reporter genefusions.Results: The experiments gave functional insights for twelve of the genes studied. For example,C36B1.12, the worm ortholog of three presenilin-like genes, was almost exclusively expressed inhead neurons, suggesting an ancient conserved role important to neuronal function. We proposea new transmembrane topology for the presenilin-like protein family. sft-4, the worm ortholog ofsurfeit locus gene Surf-4, proved to be an essential gene required for development during the larvalstages of the worm. R155.1, whose human ortholog is entirely uncharacterized, was implicated inbody size control and other developmental processes.Conclusions: By combining bioinformatics and C. elegans experiments on orthologs, we providefunctional insights on twelve previously uncharacterized human genes

    Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parasitic protozoans possess many multicopy gene families which have central roles in parasite survival and virulence. The number and variability of members of these gene families often make it difficult to predict possible functions of the encoded proteins. The families of extra-cellular proteins that are exposed to a host immune response have been driven via immune selection to become antigenically variant, and thereby avoid immune recognition while maintaining protein function to establish a chronic infection.</p> <p>Results</p> <p>We have combined phylogenetic and function shift analyses to study the evolution of the RIFIN proteins, which are antigenically variant and are encoded by the largest multicopy gene family in <it>Plasmodium falciparum</it>. We show that this family can be subdivided into two major groups that we named A- and B-RIFIN proteins. This suggested sub-grouping is supported by a recently published study that showed that, despite the presence of the <it>Plasmodium </it>export (PEXEL) motif in all RIFIN variants, proteins from each group have different cellular localizations during the intraerythrocytic life cycle of the parasite. In the present study we show that function shift analysis, a novel technique to predict functional divergence between sub-groups of a protein family, indicates that RIFINs have undergone neo- or sub-functionalization.</p> <p>Conclusion</p> <p>These results question the general trend of clustering large antigenically variant protein groups into homogenous families. Assigning functions to protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. Using phylogenetic and function shift analysis methods, we identify new directions for the investigation of this broad and complex group of proteins.</p

    Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference

    Get PDF
    Accurate inference of gene regulatory networks (GRNs) is important to unravel unknown regulatory mechanisms and processes, which can lead to the identification of treatment targets for genetic diseases. A variety of GRN inference methods have been proposed that, under suitable data conditions, perform well in benchmarks that consider the entire spectrum of false-positives and -negatives. However, it is very challenging to predict which single network sparsity gives the most accurate GRN. Lacking criteria for sparsity selection, a simplistic solution is to pick the GRN that has a certain number of links per gene, which is guessed to be reasonable. However, this does not guarantee finding the GRN that has the correct sparsity or is the most accurate one. In this study, we provide a general approach for identifying the most accurate and sparsity-wise relevant GRN within the entire space of possible GRNs. The algorithm, called SPA, applies a “GRN information criterion” (GRNIC) that is inspired by two commonly used model selection criteria, Akaike and Bayesian Information Criterion (AIC and BIC) but adapted to GRN inference. The results show that the approach can, in most cases, find the GRN whose sparsity is close to the true sparsity and close to as accurate as possible with the given GRN inference method and data. The datasets and source code can be found at https://bitbucket.org/sonnhammergrni/spa/

    siRNAdb: a database of siRNA sequences

    Get PDF
    Short interfering RNAs (siRNAs) are a popular method for gene-knockdown, acting by degrading the target mRNA. Before performing experiments it is invaluable to locate and evaluate previous knockdown experiments for the gene of interest. The siRNA database provides a gene-centric view of siRNA experimental data, including siRNAs of known efficacy and siRNAs predicted to be of high efficacy by a combination of methods. Linked to these sequences is information such as siRNA thermodynamic properties and the potential for sequence-specific off-target effects. The database enables the user to evaluate an siRNA's potential for inhibition and non-specific effects. The database is available at http://siRNA.cgb.ki.se

    Dynamic Zebrafish Interactome Reveals Transcriptional Mechanisms of Dioxin Toxicity

    Get PDF
    In order to generate hypotheses regarding the mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) causes toxicity, we analyzed global gene expression changes in developing zebrafish embryos exposed to this potent toxicant in the context of a dynamic gene network. For this purpose, we also computationally inferred a zebrafish (Danio rerio) interactome based on orthologs and interaction data from other eukaryotes.Using novel computational tools to analyze this interactome, we distinguished between dioxin-dependent and dioxin-independent interactions between proteins, and tracked the temporal propagation of dioxin-dependent transcriptional changes from a few genes that were altered initially, to large groups of biologically coherent genes at later times. The most notable processes altered at later developmental stages were calcium and iron metabolism, embryonic morphogenesis including neuronal and retinal development, a variety of mitochondria-related functions, and generalized stress response (not including induction of antioxidant genes). Within the interactome, many of these responses were connected to cytochrome P4501A (cyp1a) as well as other genes that were dioxin-regulated one day after exposure. This suggests that cyp1a may play a key role initiating the toxic dysregulation of those processes, rather than serving simply as a passive marker of dioxin exposure, as suggested by earlier research.Thus, a powerful microarray experiment coupled with a flexible interactome and multi-pronged interactome tools (which are now made publicly available for microarray analysis and related work) suggest the hypothesis that dioxin, best known in fish as a potent cardioteratogen, has many other targets. Many of these types of toxicity have been observed in mammalian species and are potentially caused by alterations to cyp1a

    Pfam: clans, web tools and services

    Get PDF
    Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://pfam.cgb.ki.se/)
    corecore